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A simple and realistic model of a bistable chemical system in which running fronts can be observed is studied.
The stochastic dynamics of this model is described by the master equation for a spatially extended system.
The results are compared with microscopic simulations of the system, performed using the molecular dynamics
technique for reactive hard spheres. The velocity of the front and its shape obtained in both simulations agree
well with the phenonenological description. For small volumes of the systems fluctuations grow locally and
create pulses of concentrations.

I. Introduction

The dynamics of nonlinear chemical systems can be sensitive
to fluctuations,1-8 which appear as a consequence of the
complex character of molecular motion and stochastic properties
of reactive collisions. One can expect substantial differences in
the influence of fluctuactions on homogeneous and inhomoge-
neous nonlinear chemical systems. Ideally stirred systems are
of course homogeneous, but also unstirred systems can be treated
as homogeneous ones if diffusion is sufficiently effective to
disperse local inhomogeneities. Otherwise, the description of
spatially extended systems has to include the dependence of
concentrations on spatial coordinates. The phenomenological
approach to dynamics of such systems is based on reaction-
diffusion equations, in which internal fluctuations of concentra-
tions are neglected. In spatially extended nonlinear systems, local
fluctuations can qualitatively change evolution of the systems.
The influence of fluctuations on the dynamics is particularly
important if the system is close to a bifurcation. The simplest
example in which such qualitative changes in the dynamical
behavior can be expected is a bistable system close to a saddle-
node bifurcation. In this case the stationary state very close to
a saddle point is weakly stable, whereas the other stable
stationary state is strongly attractive. For the homogeneous
system, global fluctuations induce a “jump” of the whole system
from a basin of attraction of the weakly stable state to the
strongly attractive one. In the spatially extended system, a
nucleation process can occur in which local fluctuations form
small domains (nuclei) due to the similar jump in localized
regions. These domains can next expand and cover a substantial
part of the system.

There have been a number of investigations on fluctuations
in both homogeneous and spatially extended bistable chemical
systems. The simplified treatment of fluctuations in nonlinear
systems can be based on the master equation (ME).1,9,10 This
method has been applied directly to simulate the propagation
of the front in the Fisher-Kolmogorov model.11 For large
systems, the master equation can be further reduced to the
corresponding Langevin equations, in which the deterministic
reaction-diffusion equations are supplemented by the stochastic
terms representing local fluctuations.9,10 Such an approach has

been used to describe the influence of fluctuations on the
propagation of the Fisher-Kolmogorov-type front12,13 as well
as on the trigger fronts.13,14 Many simulations of the effects of
fluctuations on the fronts at the mesoscopic level use the lattice
gas cellular automata methods.15 In particular, the simulations
were performed for the running front in the Schlo¨gl model16

and the fronts modeling chemical waves observed in heteroge-
neous catalytic reactions.17

The mesoscopic approach in numerical simulations is much
less demanding from a computational point of view than any
simulation at the molecular level. The most complete description
of reaction-diffusion systems can be obtained using molecular
dynamics (MD) techniques.18 However, application of these
methods to a real, macroscopic chemical system requires an
enormous number of variables (of the order of 1023). Moreover,
chemical mechanisms of real systems exhibiting nonlinear
phenomena are complex and involve processes ocurring at
different time scales.19-21 Therefore, microscopic simulations
of such systems are not possible at present. To study the
influence of internal fluctuations on nonlinear chemical systems
it is necessary to construct simple models which can be adopted
for numerical experiments. Such models should contain possibly
a minimal number of elementary processes occurring on a
similar time scale and involve reagents whose concentrations
do not differ significantly. There are only a few papers dealing
with simulations of nonlinear phenomena in spatially extended
systems at the microscopic level.22 In particular, investigations
of fluctuations in a bistable system have been reported by Baras
and Malek Mansour.23

The aim of our study is to compare the description obtained
from ME with MD simulations for an inhomogeneous bistable
system. While the influence of fluctuations on the velocity of
chemical fronts has been studied previously by ME and
Langevin approaches,11-14 we mainly focus our attention on
nucleaction, that is, spontaneous generation of pulses in regions
ahead of the running front and in initially homogeneous systems.
In the present paper, we apply the “hard-sphere chemistry”24

as the simplest algorithm for MD simulations, which can be
used provided a chemical model consists of bimolecular
reactions only. Therefore, the simple models for the chemical
trigger waves, like the Schlo¨gl model, cannot be treated directly
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by MD because they contain trimolecular reactions, and
comparison of the ME and MD approaches is not possible.
Recently, we have presented the simple but realistic reaction
scheme of a bistable system which consists of elementary
processes only and does not include autocatalytic steps.25 These
properties allow us to perform for the first time direct simula-
tions of the trigger front by the MD technique and ME method.

The paper is organized as follows. In section II, the model is
described and its phenomenological dynamics in spatially
extended systems is analyzed. The next section is concerned
with the methods used in our simulations. In section IV, we
present results for the inhomogeneous system as well as
homogeneous one. The simulations are compared with results
of a phenomenological description of the system.

II. Phenomenological Model

The model consists of seven elementary reactions:

It may be noticed that by substituting VE instead of X and
V2E instead of Y one obtains the well-known scheme for a
catalytic (enzymatic) reaction inhibited by an excess of its
reactant V. This scheme is a modification of the well-known
model of an open chemical system with a catalytic (enzymatic)
reaction, inhibited by an excess of its reactant V. The reactant
V is transformed to the product U with E as the catalyst (steps
2 and 3). This part of the scheme is the well-known Langmuir-
Hinshelwood mechanism of catalytic reactions (or the Michae-
lis-Menten kinetics for enzymatic reactions). Step 4 is the
inhibition of the Langmuir-Hinshelwood mechanism (or the
Michaelis-Menten scheme) by an excess of the reactant V. It
is assumed that S is a solvent, whose concentration is held
constant. The system is open, due to step 1, in which the reactant
V is produced from the reagent R, whose concentration is also
maintained constant. Step 1 can be replaced by a flow term
which mimics a continuously strirred tank reactor (CSTR) open
to the reactant V but closed to the catalyst E and its complexes
X and Y, which can be immobilized inside the reactor.

In the sequel we are mainly interested in spatially extended
systems. Therefore, we assume that the initial distributions of
reagent concentrations depend on space coordinates. Such
conditions can be achieved experimentally in a continuously
fed unstirred reactor (CFUR) or a so-called “gel disc reactor”.
The local mass balance equations with reaction and diffusion
terms for each reagent separately must be used to describe the
dynamics of the system. According to the mass action law, the
behavior of the system is described by four kinetic equations
for V, E, X, and Y, where the symbols of the reagents are used
to denote their concentrations for convenience, because this
notation does not cause any misunderstandings. For simplicity,

we restrict our considerations to one-dimensional systems. The
kinetic equations have the form:

In the following, we assume that the diffusion coefficients
of all reagents are identical and they are denoted byD. To
simplify further considerations we also assume that initially the
sumE(x,0) + X(x,0) + Y(x,0) ) E0 is constant in space. Then,
summing up eqs 6-8 it is easy to see thatE(x,t) + X(x,t) +
Y(x,t) ) E0 for all times t > 0. Thus, one of the variables (for
exampleY) can be eliminated and the dynamics of the system
is described by three reaction-diffusion equations only:

The homogeneous system with reactions 1-4 and thus
described by the above equations without the diffusion terms
has been studied in our recent papers.25 It may be shown that
for a wide range of the parameters the model exhibits bistability
with the stationary states, (V1, E1, X1), (V2, E2, X2), and (V3, E3,
X3). The state denoted as (V1, E1, X1) is weakly attractive and
(V3, E3, X3) is strongly attractive, whereas (V2, E2, X2) is
repelling.

It is well-known that a one-dimensional infinite system
discribed by one reaction-diffusion equation for bistable
dynamics has the running front as an asymptotic solution for
properly chosen initial conditions.26,27If the total concentration
of the catalyst (enzyme)E0 is much smaller than the concentra-
tion of the reactant V then the dynamics of the homogeneous
system can be reduced to one variable. In this case, one can
separate scales of time in which the concentrations of the
reagents change. The variablesE and X are fast variables,
whereasV is a slow one. On the basis of the Tikhonov
theorem,28 in slow time scale the fast variables remain equal to
their quasistationary values, and then the behavior of the system
can be described by one kinetic equation for V only.

whereKm ) (k-2 + k3)/k2 andK4 ) k-4/k4.
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For appropriate values of the parameters, the variableV has
three stationary states. The stationary states with the lowest and
the highest concentrations are stable, whereas the middle one
is unstable. Therefore, eq 12 with initial condition such that
one part of the system is in a basin of attraction of one stable
stationary state and the other one is in a basin of attraction of
the other stable stationary state, has an asymptotic solution in
the form of a running frontV(ê), whereê ) x ( Ft + x0. A
velocity of the running frontF is given by27

For the particular form of the right-hand side of (12), the
explicit form of solution is not known. However, a sign ofF is
determined by the sign of∫V1

V3f(V) dV. If this integral is positive,
then the region withV close toV3 expands, and for a negative
value of the integral, the region withV close toV1 expands.
For uniform initial distributions ofE0, the distributions ofE
andX in a slow time scale are held at their quasistationary values
which are determined by the asymptotic distribution ofV.

It is a common belief and it has been confirmed by numerical
calculations (but to our best knowleadge there is no proof) that
also spatially extended infinite systems described by reaction-
diffusion equations for many variables have asymptotic solutions
in the form of the running front for properly chosen initial
conditions. Similarly to the one-variable system, the kinetic
equations without the diffusion terms should have three station-
ary states, two of them are stable and one is unstable. Therefore,
on the basis of the results for the one-variable case, we expect
that the three-variable system (9-11) has asymptotic solutions
in the form of travelling fronts. Selecting values of the
parameters and the diffusion coefficient for simulations, we are
restricted mainly by the MD approach, in which a limited
number of molecules is used. For efficient MD simulations, the
numbers of molecules of the reagents should not differ by more
than 3 orders of magnitude and, moreover, the rate constants
should have values as close as possible. The diffusion coefficient
is determined by microscopic parameters characterizing the
system. In our MD simulations its value corresponds to a dense
gas. MD simulations were performed for two sets of the rate
constants and the diffusion coefficient: (A)k1 ) 142.74,k-1

) 87.23,k2 ) 793.0,k-2 ) 39.65,k3 ) 1546.35,k4 ) 793.0,
k-4 ) 396.5 (all constants in [10-8 s M]-1) and D ) 1.175
10-3 µm2/10-8 s and (B)k1 ) 137.52,k-1 ) 84.04,k2 ) 764.0,
k-2 ) 38.2,k3 ) 1489.8,k4 ) 764.0,k-4 ) 382.0 (all constants
in [10-8 s M]-1), andD ) 1.35 10-3 µm2/10-8 s.

We have carried out ME simulations and numerical solutions
of eqs 9-11 for the same sets of the parameters. Moreover,
some additional ME simulations were performed for (C)k1 )
144.0,k-1 ) 88.0,k2 ) 800.0,k-2 ) 40.0,k3 ) 1560.0,k4 )
800.0,k-4 ) 400.0 (all constants in [10-8 s M]-1) and two
values of the diffusion coefficient, 0.2 and 0.02µm2/10-8s. In
all simulations we usedR ) 0.5 M, E0 ) 0.2 M, andS ) 0.1
M. For all sets of the rate constants the concentrations at the
stationary states are identical and equal toV1 ) 0.113816,E1

) 0.069820,X1 ) 0.039733;V2 ) 0.139666,E2 ) 0.054810,
X2 ) 0.038275;V3 ) 0.514699,E3 ) 0.006652,X3 ) 0.017120.

We used two types of the boundary conditions, the periodic
conditions in MD simulations and the zero-flux conditions for
ME simulations. In all cases for appropriate initial conditions
the system becomes uniform and approaches the strongly
attractive stationary stateV3, E3, X3 after sufficiently long time.

Numerical solutions can be treated as reasonable approximations
of the running fronts in an infinite system if the “front’s width”
is small as compared with a size of the system. Moreover, the
region occupied by the weakly stable stationary state should be
sufficiently large that the front propagation can be observed.

III. Simulation Methods

Periodically Extended Molecular Dynamics.The periodi-
cally extended MD technique for reactive hard spheres29 is
applied to simulate the time evolution of an inhomogeneous
system with reactions 1-4 at the microscopic level. The
algorithm used in this paper is similar to the one applied in
refs 25 and 30. All reactants (E, R, S, U, V, X, and Y) are
represented by spheres with the same mass (m) and diameter
(σ). The spheres are labeled by a chemical identity parameter
which defines their “chemical” properties but does not have
any influence on the mechanical motion. Both reactive and
nonreactive collisions between spheres are considered. To
control the rates of various chemical processes, the steric factors
are introduced (they are denoted assi, s-i; i ) 1, 4). They
describe a fraction of collisions between reactants of a given
process which leads to a reaction. If a collision between spheres
representing reagents of a given process occurs, then a random
number generator is used and the collision is regarded as a
reactive one if the obtained random number is smaller that the
corresponding steric factor. After such a collision, the chemical
identity parameters of the spheres involved are modified
according to the assumed reaction scheme. Otherwise, the
collision is a nonreactive one and the spheres retain their
chemical identities.

If reactions 1-4 are thermoneutral, then all collisions between
spheres are elastic. Within this assumption, the system of spheres
as a whole is in thermal equilibrium with respect to the
translational motion. Maintaining such equilibrium in a system
with chemical reactions is very important from the computa-
tional point of view because it allows us to extend the size of
the system using a prerecorded equilibrium trajectory.29 Any
trajectory which was calculated for a system of spheres with
the periodic boundary conditions may be used as a database
which allows one to enlarge the size of simulations. The periodic
boundary conditions mean that positions and velocities of
molecules are periodic in space with the period equal to the
length of the box within which the simulations were performed.
Therefore, the original small system may be periodically
expanded in any of the directions by any integer number of the
box lengths. Of course, if a chemical identity of molecules is
neglected then such expansion does not bring us any new
information. However, in a multicomponent chemical system,
in which the translational motion is not related to chemical
identity, the situation is different. First, different chemical
composition may be initialized in various boxes by marking
the equivalent (by periodicity) spheres in a different way.
Second, steric factors (if they are not equal to unity) differentiate
the time evolution in various boxes, as a collision between the
same objects may be reactive in one box and nonreactive in
another one. The periodic boundary conditions ensure free
motion of molecules between boxes. The problems concerned
with the influence of system size on the observed evolution may
be studied in an effective way.

In studies on chemical wave front propagation it is convenient
to consider systems extended by a large number of cell lengths
in the direction the wave propagates (thex direction) and by a
few cell lengths in the transversal directions. The system is

F ) -
∫V1

V3f(V) dV

∫-∞

+∞(dV
dê)2

dê
(13)
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initialized in such a way that a part of it is in one stationary
state and the remaining part in another one. Let us consider a
slice in the xth direction, which is one box wide. At the
beginning of each MD simulation, the chemical identities within
such a slice are assigned to spheres in a random way and all
remaining spheres are marked as the reservoir particles. In
simulations, the numbers of particles representing the reactants
R and S are constant, which is achieved by assuming that the
system contains nonrective particles which play the role of
reservoirs of R and S molecules.31 If a particle of S (R) vanishes
in one of the reactions, then simultaneously a randomly selected
particle of the reservoir, which belongs to the same slice, is
transformed into S (R), respectively. On the other hand, if a
particle of S (R) appears, then a randomly chosen particle of S
(R), which belongs to the same slice, becomes a particle of the
reservoir. However, the partices of S and R may migrate
between slices and their numbers in different slices may change.

The applied technique forces the periodic boundary conditions
for the mechanical motion of spheres in the extended system.
For simplicity of the MD simulations, we considered a case in
which both ends are in the weakly stable state and an interval
in the middle corresponds to the strongly attractive state. For
such a system, the boundary conditions in all directions were
periodic.

The MD results discussed below have been obtained by a
periodic extension of two trajectries. One of them describesN
) 500 hard spheres placed in a cubic box with the side length
d ) 14σ (and thus the packing fraction isη ≈ 0.095). The
trajectory contained 10 000 000 collisions (20 000 collision per
sphere). The other one was recorded forN ) 400 hard spheres
placed in a cubic box with the side lengthd ) 12.5σ (and thus
the packing fraction isη ≈ 0.11). It contained 12 800 000
collisions (32 000 collision per sphere). For both trajectories,σ
) 5 × 10-4 µm.

In both cases, the diffusion coefficients were calculated from
the average square of the displacement of a spherer(t) as the
function of time.

We obtainedD ) 1.35× 10-3 µm2/10-8 s for η ≈ 0.095 and
D ) 1.175× 10-3 µm2/10-8 s for η ≈ 0.11, and these values
have been used in ME simulations and numerical solutions of
(9-11) for comparison of the methods.

In MD simulations we assumed the following values of steric
factors for reactions 1-4: s1 ) 0.018,s-1 ) 0.011,s2 ) 0.1,
s-2 ) 0.005,s3 ) 0.195,s4 ) 0.1, s-4 ) 0.05. These steric
factors lead to sets A and B of the rate constants given in the
previous Section.

Master Equation Approach. The ME approach determines
the probability distribution of populations of molecules in a
chemical system. To include the spatial dependence of concen-
trations (local populations), the (one-dimensional) system is
divided intoM cells along the spatial coordinate. The volume
Ω and the length∆l of each cell are assumed identical. The
state of our system (1-4) is described by the probability
distributionP({NV,i,NE,i,NX,i,NY,i},t) of finding a set of popula-
tionsNQ,i of species Q) V, E, X, Y in a cell i ) 1, ...,M. (A
number of molecules R, S in each cell is constant and equal to
NR andNS.) A number of moleculesNV,i, NE,i, NX,i, NY,i in the
ith cell can be changed either by a chemical reaction between
molecules within a cell or by a transfer of a molecule to or

from adjacent cells. Both kind of these processes contribute
independently to the time evolution of the distribution function,
and the master equation forP can be presented in the following
general form:

The contribution due to the chemical processes describes isolated
reactions in each single cell provided that populations in other
cells remain unchanged; it is a straightforward extension of the
corresponding term for the uniform system25

The notation (...,NQ,j, ...) means that exceptNQ,j all populations
in the distribution functionP remain unchanged. The right-hand
side of (15) expresses the rate of change of a probability of a
state{NV,i,NE,i,NX,i,NY,i} as a balance of the “birth” and “death”
processes. The “birth” term is formed by the positive compo-
nents of (14), which describe creation of a given state, resulting
from transitions from other states under particular chemical
processes 1-4. Consequently, the last component of (14) is a
“death” term, describing escape from this state to other points
of the configuration space. The coefficientνchem provides the
total rate of escape from the configuration ({NV,i,NE,i,NX,i,NY,i}),
as a result of chemical reactions

The respective terms of sum (16) represent the rates of reactive
collisions corresponding to reactions 1-4. The coefficientsκi

are related to the phenomenological rate constants of bimolecular
reactions 1-4 by κi ) ki/Ω. The units must be consistent so
that the result is in (time unit)-1. Due to this relation, the
chemical terms in the phenomenological eqs 5-8 can be
recovered from the master equation in the limitΩ f ∞, as the
equations for the average number concentrations〈NQ/Ω〉.

To account for the diffusion process it is assumed that every
particle can jump with certain probability to a neighbor cell.
These hoping rates are related to the diffusion coefficients and

D )
〈r2〉(t)

6t

∂

∂t
P({NV,i},{NE,i},{NX,i},{NY,i},t) ) ∂P

∂t |chem
+ ∂P

∂t |diff
(14)

∂P

∂t |chem
) ∑

j)1

M

(κ1NRNSP(...,NV,j - 1, ...,t)

+ κ-1(NV,j + 1)NSP(...,NV,j + 1, ...,t)

+ κ2(NV,j + 1)(NE,j + 1)P(...,NV,j + 1, ...,NE,j +
1, ...,t)

+ κ-2(NX,j + 1)NSP(...,NV,j - 1, ...,NE,j -
1, ...,NX,j + 1, ...,t)

+ κ3(NX,j + 1)NSP(...,NE,j - 1, ...,NX,j + 1, ...,t)

+ κ4(NV,j + 1)(NX,j + 1)P(...,NV,j + 1, ...,NX,j +
1, ...,t)

+ κ-4(NY,j + 1)NSP(...,NY,j + 1, ...,t))

- νchemP({NV,i},{NE,i},{NX,i},{NY,i},t) (15)

νchem({NV,i,NE,i,NX,i,NY,i}) ) ∑
j)1

M

(κ1NRNS + κ-1NV,jNS +

κ2NV,jNE,j + (κ-2 + κ3)NX,jNS + κ4NX,jNV,j + κ-4NY,jNS)
(16)
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in general can be specific for each species. The term of eq (14)
describing diffusion has then the following form:

Let us notice that contrary to the phenomenological approach
we cannot eliminate the species Y because the number of
molecules in each cell fluctuates for all components due to
diffusion.

In the above equation, the terms for boundary cells,j ) 1
andM, can formally include populations{NQ,j (1} outside the
system, that is, forj ) 0 andM + 1. The interpretation of these
values depends on boundary conditions. In the application of
ME, we assumed that the boundaries of the system were
impermeable walls (corresponding to zero-flux boundary condi-
tions in the phenomenological description), and then transitions
of molecules outside the system were forbidden. Consequently,
the terms involvingj ) 0 and M + 1 are disregarded. The
coefficientνdiff , describing the total rate of diffusive jumps for
all cells, for that system can be written as

The relation between the transition ratesdQ and the diffusion
coefficientsDQ is obtained from the condition that the usual
diffusion terms are recovered from equation (17) in the limit of
large volume,Ω f ∞, and fine division,∆l f 0. This yields
the relationdQ ) DQ/(∆l)2, which shows that for a given value
of the diffusion coefficient the hopping ratesdQ increase for
finer divisions.

The master equation describes the stochastic system in terms
of the probability distribution function. Alternatively, a sto-
chastic dynamics of a chemical system can be considered as a
random walk in a discrete space, in which coordinates of each
point give populations{NQ,i} of molecules in each cell. We have
performed Monte Carlo (MC) simulations of this (continuous
time) random walk applying the method of Gillespie,32 which
generates a stochastic trajectory according to the following
algorithm. Let us assume that the system at an instantt is in a
state which is given by the point ({NV,i,NE,i,NX,i,NY,i}). The total
rate of escape of the system from this point due to any reaction
or diffusion process is equal toν ) νchem+ νdiff . According to
this, in the first step of the algorithm, a waiting timeτ for the
transition is sampled from the exponential distribution

The next step consists of choosing a particular reaction or
diffusion process, which causes a transfer of the system to
another point. The probabilityp(R) of selection of processR is
proportional to its contribution to the total rate of escapeν. For
chemical reactionF in a cell j, that means

whereN1F,j and N2F,j denote populations of molecules of the
corresponding two species involved in the bimolecular reaction
F. Similarly, for the probability of a diffusive jump (to the left
or right) of a molecule Q in a cellj one obtains

Next, the populations{NV,j,NE,j,NX,j,NY,j} are updated as they
result from the chosen processR; in terms of the random walk,

∂P

∂t |diff
) ∑

j)1

M

(dV(NV,j-1 + 1)P(...,NV,j-1 + 1, NV,j - 1, ...,t)

+ dV(NV,j+1 + 1)P(...,NV,j - 1, NV,j+1 + 1, ...,t)

+ dE(NE,j-1 + 1)P(...,NE,j-1 + 1, NE,j - 1, ...,t)

+ dE(NE,j+1 + 1)P(...,NE,j - 1, NE,j+1 + 1, ...,t)

+ dX(NX,j-1 + 1)P(...,NX,j-1 + 1, NX,j - 1, ...,t)

+ dX(NX,j+1 + 1)P(...,NX,j - 1, NX,j+1 + 1, ...,t)

+ dY(NY,j-1 + 1)P(...,NY,j-1 + 1, NY,j - 1, ...,t)

+ dY(NY,j+1 + 1)P(...,NY,j - 1, NY,j+1 + 1, ...,t))

- νdiffP({NV,i, NE,i, NX,i, NY,i},t) (17)

νdiff({NV,i, NE,i, NX,i, NY,i}) ) dVNV,1 + dENE,1 + dXNX,1 +

dYNY,1 + 2∑
j)2

M-1

(dVNV,j + dENE,j + dXNX,j + dYNY,j) +

dVNV,M + dENE,M + dXNX,M + dYNY,M (18)

Θ(τ) ) νexp(-ντ) (19)

Figure 1. Spatial distributions of concentration of V. The values of
the parameters from set A were used for MD and ME simulations.
The cell volumeΩ ) 1.042× 10-5 µm3. (a) MD results for timest:
1.6696, the short dashed line; 4.4515, the dashed line; 5.842, the solid
line. (b) ME results for timest: 1.6358, the short dashed line; 4.4399,
the dashed line; 5.842, the solid line.

pchem(F,j) ) ν-1
κFN1F,jN2F,j (20)

pdiff(Q,j) ) ν-1dQNQ,j (21)
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the system moves to the new point. Given this new state,
generation of the random trajectory proceeds beginning from
the first step, and so on. The coarse-grained description provided
by the master equation, which is based on a division of space
in finite size cells, is valid when concentrations in each single
cell can be regarded as uniform. This condition can be satisfied
if the length of a cell is sufficiently small. The results of the
phenomenological approach can be used as a first approximation
for variation of concentration within a cell; on this basis a size
of a cell can be roughly evaluated. Therefore, the master
equation is applicable if the division is fine enough to describe
inhomogenities relevant for a given problem. On the other hand,
the transport between neighbor cells can be described by
diffusion only if a single cell is longer than the mean free path
of molecules. Also, the number of molecules in a cell must be
sufficiently large to provide enough accurate statistics for
populations, even for the reactant of the smallest concentration.

IV. Results

The simulations for initially inhomogeneous as well as
homogeneous spatially extended systems were performed. We
compare the results obtained by MD and ME approaches for
the systems with the same rate constants, diffusion coeficients,
and number of molecules. The only difference was that the
boundary conditions used in MD were periodic, whereas for
ME simulations the zero-flux conditions were assumed.

Let us recall that in simulations of ideally stirred systems
with the same reaction scheme25 we observed transitions from
the basin of attraction of the weakly stable stationary state to
the other one. It was found that the mean first passage time
strongly increases with the volume of the system. On the basis
of this dependence we were able roughly estimate a volume of
the cell for simulations of spatially extended systems. For the
nonuniform initial conditions described in section II, the region
occupied by the strongly stable stationary state expands due to
the running front mechanism. Moreover, one can expect that
spontaneous transitions from the weakly to the strongly stable
stationary state can occur locally in a finite time long before

Figure 2. Same as in Figure 1, but for the parameters from set B. The
cell volumeΩ ) 1.875× 10-5 µm3. (a) MD results for timest: 0.863,
the short dashed line; 3.017, the dashed line; 4.309, the solid line. (b)
ME results for timest: 0.862, the short dashed line; 3.017, the dashed
line; 4.310, the solid line.

Figure 3. Same as in Figure 2, but the cell volumeΩ ) 0.469×
10-5 µm3.
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the running front arrives. The appearing domains spread out
like the running front too. For the selected values of the
parameters, we can clearly observe both the propagation of the
running front and spontaneous creations of pulses.

In Figures 1-3, we present a comparison between results
obtained for initially inhomogeneous systems by (a) MD and
(b) ME methods at selected times. In these simulations our
system consists of 500 cells. At the beginning, the concentrations
of the reagents in cells numbered from 220 to 280 corresponded
to the strongly attracting stable stationary state, whereas in all
other cells, the weakly stable stationary state was assumed.
Figure 1 shows the evolution of V for the system characterized
by the volume of a single cell, 1.042× 10-5 µm3, and the
parameters from set A. The length of the system is 3.125µm.
Expansion of the pulse initialized in the middle zone of the
system is seen. It can be treated as propagation of two fronts in
the opposite directions. The agreement between MD and ME

results is very good for times less than 1.7. For longer times,
the results of the two methods coincide for the front progating
to the left. In MD simulation the front propagating to the right
moves faster than the one obtained in ME simulation. The
evolution of the system for times longer than 1.7 is strongly
affected by spontaneous generation of new pulses which
originate due to transitions from the weakly to the strongly stable
state induced by local fluctuations. These transitions occur more
frequently in MD simulations than in ME ones.

Figure 2 presents snapshots of V for the system characterized
by the volume of single cell 1.875× 10-5 µm3 and the
parameters from set B. This is the largest volume we considered
in our MD simulations. The length of the system is 3.5µm.
The profiles of the expanding pulse obtained from the two
simulation methods agree perfectly for this system. The main
difference in comparison with the previous case is that for such
large volume the spontaneous generation of new pulses is much
more difficult. Local fluctuations are smaller because the volume

Figure 4. Comparison between numerical solutions of eqs 9-11 with
MD simulations (a) and with ME simulations (b) for the system
presented in Figure 1. The initial conditions in phenomenological
calculations were defined by the concentration distributions obtained
in simulations att ) 4.17 (MD) andt ) 3.97 (ME). They are denoted
by the short dashed line. The dashed line and the solid line show the
results of simulations and phenomenological calculations fort ) 5.842.

Figure 5. Same as in Figure 4 but for the system presented in Figure
3. The initial conditions in phenomenological calculations were defined
by the concentration distributions obtained in simulations att ) 2.154
(MD) andt ) 2.586 (ME). The dashed line and the solid line show the
results of simulations and phenomenological calculations fort ) 4.310.
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of a cell is much larger. It is expected that the evolution of the
system with parameter set B is qualitatively similar to that seen
in Figure 1 if the cell volume is smaller. Figure 3 shows
snapshots of V for the system with the same values of the
parameters as in Figure 2, but the volume of a single cell is
reduced to 0.469× 10-5 µm3. Many new pulses appear in this
system at the same time. Also, in this case both simulation
methods give similar rates of expansion of the initial pulse.
Similarly to in Figure 1, for the system with parametr set B the
spontaneous generation of pulses is easier in MD as compared
with ME simulations.

To study the influence of fluctuations on the dynamics of
the system, we compared the solutions of the deterministic eqs
9-11 with the MD and ME simulations. The initial conditions
for eqs 9-11 were taken as the concentrations of the reagents
obtained in simulations for selected times. Figure 4 shows the
comparison between simulations (MD (a), ME (b)) and phe-
nomenological equations for the system presented in Figure 1.
The phenomenological calculations were initiated by the simula-
tion results fort ) 4.17 (MD) andt ) 3.97 (ME). We have
found a very good agreement for the expansion of the initial
pulse, as well as for evolution of sufficiently developed
spontaneous pulses. However, small fluctuations vanish in the
deterministic evolution, whereas they may grow to macroscopic
size in the simulations. A similar relation between the phenom-
enological description and the simulations is observed in Figure
5, in which the calculations for the system presented in Figure
3, initialized by the simulation results fort ) 2.15 (MD (a))
and t ) 2.59 (ME (b)) are shown.

To check the influence of division of the system into cells of
various volumes on the ME results we have performed special
simulations in which we used various system divisions.25 These
simulations were carried out for initially inhomogeneous as well
as uniform systems. Set C of the parameters was used, and the
length of the system was equal to 5µm. The example results
for initially homogeneous system are shown in Figures 6 and
7. In these two cases the total volumes of the systems were the
same, butM ) 400 andΩ ) 2.5 × 10-6 µm3 in Figure 6,

whereasM ) 200 andΩ ) 5 × 10-6 µm3 in Figure 7. The
results presented in these figures (as well as those not shown
here) indicate that general features of the dynamics do not
depend on divisions used in our ME simulations (regardless
the stochastic details).

Spontaneous creation of pulses is more difficult if diffusion
is faster, and this effect is worth studing in more detail by
simulations of systems which differ by diffusion coefficients
only. In MD simulations we could not achieve wider variations
of the diffusion coefficient. This restriction does not play major
role in ME simulations. In Figure 8 we show the results of ME
simulations for the initially homogeneous system and the same
division and cell volume as in Figure 6, but with the diffusion
coefficient one order larger, equal to 0.2. It can be noticed that
in this case only the single pulse appears and at a much later
time.

One can estimate a size of fluctuations which are able to
switch the system from the basin of attraction ofV1, E1, andX1

to the basin of attraction ofV3, E3, andX3 on the basis of the

Figure 6. Spatial distributions of concentration ofV obtained in ME
simulations of an initially homogeneous system atV1, E1, X1 for set C
and the diffusion coefficientD ) 0.02µm2/10-8 s. The division inM
) 400 cells withΩ ) 2.5 × 10-6 µm3 was used. Snapshots for times
t: 1.25, the short dashed line; 2.50, the dashed line; 3.75, the long
dashed line; 4.0, the solid line.

Figure 7. Same as in Figure 6 but forM ) 200 andΩ ) 5 × 10-6

µm3.

Figure 8. Same as in Figure 6 but forD ) 0.2 µm2/10-8 s at timest:
9.25, 10.00, 10.75, 11.25, 11.75, 12.25.
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reduced system described by (12). The linear stability theory
determines the behavior of infinitely small perturbations of the
homogeneous stationary statesV1, V2, and V3 in the form of
normal modesδVi(t,x) ) δV0i exp(iqx + σt) for which the
dispersion relation is

It is easy to check that if

then the perturbations with any wavenumbersq decay in time.
Therefore, the homogeneous stationary statesV1 and V3 are
stable. It is not the case forV2, for which df(V2)/dV g 0. Thus,
for q e qc ) (1/Ddf(V2)/dV)1/2 the value ofσ can be positive
and the perturbations of the homogeneous stateV2 can grow in
time. The size of the critical nucleus given byλ ) 2π/qc is
equal to 0.145µm for D ) 0.02µm2/10-8 s and 0.46µm for D
) 0.2 µm2/10-8 s for the parameters used in Figures 6-8 (set
C). These values are rough estimations, and they give ap-
proximate minimal sizes of fluctuations which can switch the
system from the basin of attraction of the weakly stable
stationary state to the strongly stable stationary one. The results
shown in Figures 6-8 confirm these estimations, although the
system is initialized as uniform at the stable stateV1, E1, X1,
not in the unstable saddle pointV2, E2, X2.

Analysis of the Fourier spectrum of concentration of V in
the region of space which remains close to the weakly stable
stationary state can be used to evaluate a critical wavenumber
below which spontaneous excitations grow in time. Figure 9
shows changes of the Fourier spectrum in time obtained from
MD (Figure 9A) and ME (Figure 9B) simulations for the system
with the parameters defined by set B. The results are in
qualitative agreement with those obtained from the phenom-
enological descripition given above. In both MD and ME
simulations, the Fourier components with small wavenumbers
grow in time, whereas for large wavenumbers their amplitudes
fluctuate at low level. The evolution ofV(q) obtained from both
simulation methods is in quantitative agreement. MD and ME
indicate that in the system studiedqc ≈ 50 ( 10 µm-1, which
gives the size of the critical nucleusλc ≈ 0.126µm. λc calculated
from eq 23 is equal to 0.154µm which is in quite good
agreement with the critical size nucleus evaluated above.

Similar analysis of the Fourier spectrum obtained from ME
simulations for the system (set C) with a large diffusion
coefficientD ) 0.2 µm2/10-8 s initialized at the weakly stable
stationary state is shown in Figure 10. In this case the critical
wavenumber evaluated from eq 23 isqc ≈ 14µm-1, (λc ≈ 0.449
µm) which is also in good agreement with the results of
simulations. On the basis of the above observations, we can
conclude that the criterion deduced from the linear stability
applied to the saddle point gives a reasonable estimation of the
size of the critical nucleus.

The approximate theoretical description of fluctuations in the
reaction-diffusion system may be based on the Langevin
approach in which additional terms corresponding to stochastic
character of reaction and diffusion processes are added to eq
12. As the simplest approximation, one can consider that the
stochastic terms are given by the white noise which is uncor-
related in time and space. Within this approximation, one can
show that the square of the amplitude of the Fourier components

for q > qc should converge toε/2(Dq2 - df(V2)/dV) whereε is
the noise amplitude.10 We have calculated the average modulus
of the Fourier components forq > 80 µm-1 obtained from MD
simulations of the system with set B for two volumes: 0.469
× 10-5 µm3 and 1.875× 10-5 µm3. The average modulus of
amplitude does not depend on time, and it equals approximately
0.18 and 0.11, respectively. The square of their ratio roughly
corresponds to the inverse ratio of the system’s sizes.

Figure 9. Time evolution of the modulus of the Fourier spectrum of
the region remaining close to the weakly stable stationary state obtained
from MD (a) and ME (b) simulations. Both simulations are performed
for the same set of the parameters (set B) andΩ ) 0.469× 10-5 µm3.
The curves show results for the following times: 0.431, the short dashed
line; 2.155, the long dashed line; 4.31, the solid line.

Figure 10. Fourier spectrum for the simulations presented in Figure
8 at the following times: 2.5, the short dashed line; 6.25, the long
dashed line; 10.0, the solid line.

σ ) -Dq2 +
df(Vi)

dV
(22)

df(Vi)

dV
) -k-1S-

k3E0S[KmS- Vi
2/(K4S)]

[KmS+ Vi + Vi
2/(K4S)]2

e 0 (23)
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Estimations of the size of the critical nucleus were derived
by Nitzan et al.33 from the Fokker-Planck equation approach
for two- and three-dimensional systems in space with chemical
kinetics described by a potential. However, we cannot apply
these results to our model because the dynamics of the system
given by eqs 9-11 cannot be described by any potential and
moreover our system is treated as one-dimensional in space.

V. Conclusions

In the present paper we have demonstrated that both molec-
ular dynamics and master equation can be successfully applied
for the description of spatiotemporal wave phenomena in the
multicomponent chemical systems for the appropriate con-
structed model. The numerical solutions of the reaction-
diffusion equations are consistent with the simulations in the
case that the stochastic character of processes is not very
impotrant. In particular, the velocities of the expanding initial
pulse obtained in the phenomenological description are in good
agreement with the simulations. This happens if diffusion is
sufficiently fast to disperse local fluctuations before they reach
a macroscopic size. However, when fluctuations become
comparable with macroscopic quantities, the stochastic effects
give rise to the behavior which is not predicted by the
phenomenological equations. We have observed spontaneous
generation of pulses which subsequently expanded according
to a chemical wave mechanism. The appearance of these pulses
substantially changes the dynamics of the whole system. In our
simulations, the system is switched to (V3, E3, X3) long before
the running front arrives. Therefore, the spontaneous generation
of pulses decreases an interval of time necessary to complete
the transition to the strongly stable stationary state in a finite
system. However, it is worth stressing that if a fluctuation
reaches sufficiently large magnitude, its subsequent evolution
obtained in the simulations and in the phenomenological
approach are consistent. The spontaneous generation of the
pulses has been previously observed in simulations of bistable
systems by cellular automata techniques,16 but to our best
knowledge, our paper presents the first study of this phenomenon
using both ME and MD simulations. The rate constants and
diffusion coefficients we used in the simulations have realistic
values. The size of the simulated systems follows then from
the above parameters and our computer facilities. We have found
that the description of fluctuations in the spatially extended
chemical systems given by the master equation agrees well with
the molecular dynamics simulations. This conclusion is impor-
tant because the numerical algorithm used for simulation of
master equation are more efficient than those for MD, and they
allow for simulations of larger systems at much longer time
scales. However, the molecular dynamics methods give the
insight into evolutions on the microscopic level, and therefore,
they can be useful to describe nonequilibrium effects which are
completely neglected in the ME approach.
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